3.432 \(\int \frac{\sin ^2(e+f x)}{(b \sec (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=98 \[ \frac{4 \sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right ) \sqrt{b \sec (e+f x)}}{21 b^2 f}+\frac{4 \sin (e+f x)}{21 b f \sqrt{b \sec (e+f x)}}-\frac{2 b \sin (e+f x)}{7 f (b \sec (e+f x))^{5/2}} \]

[Out]

(4*Sqrt[Cos[e + f*x]]*EllipticF[(e + f*x)/2, 2]*Sqrt[b*Sec[e + f*x]])/(21*b^2*f) - (2*b*Sin[e + f*x])/(7*f*(b*
Sec[e + f*x])^(5/2)) + (4*Sin[e + f*x])/(21*b*f*Sqrt[b*Sec[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0821301, antiderivative size = 98, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {2627, 3769, 3771, 2641} \[ \frac{4 \sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right ) \sqrt{b \sec (e+f x)}}{21 b^2 f}+\frac{4 \sin (e+f x)}{21 b f \sqrt{b \sec (e+f x)}}-\frac{2 b \sin (e+f x)}{7 f (b \sec (e+f x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sin[e + f*x]^2/(b*Sec[e + f*x])^(3/2),x]

[Out]

(4*Sqrt[Cos[e + f*x]]*EllipticF[(e + f*x)/2, 2]*Sqrt[b*Sec[e + f*x]])/(21*b^2*f) - (2*b*Sin[e + f*x])/(7*f*(b*
Sec[e + f*x])^(5/2)) + (4*Sin[e + f*x])/(21*b*f*Sqrt[b*Sec[e + f*x]])

Rule 2627

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[(b*(a*Csc[e
+ f*x])^(m + 1)*(b*Sec[e + f*x])^(n - 1))/(a*f*(m + n)), x] + Dist[(m + 1)/(a^2*(m + n)), Int[(a*Csc[e + f*x])
^(m + 2)*(b*Sec[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] && NeQ[m + n, 0] && IntegersQ[2
*m, 2*n]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sin ^2(e+f x)}{(b \sec (e+f x))^{3/2}} \, dx &=-\frac{2 b \sin (e+f x)}{7 f (b \sec (e+f x))^{5/2}}+\frac{2}{7} \int \frac{1}{(b \sec (e+f x))^{3/2}} \, dx\\ &=-\frac{2 b \sin (e+f x)}{7 f (b \sec (e+f x))^{5/2}}+\frac{4 \sin (e+f x)}{21 b f \sqrt{b \sec (e+f x)}}+\frac{2 \int \sqrt{b \sec (e+f x)} \, dx}{21 b^2}\\ &=-\frac{2 b \sin (e+f x)}{7 f (b \sec (e+f x))^{5/2}}+\frac{4 \sin (e+f x)}{21 b f \sqrt{b \sec (e+f x)}}+\frac{\left (2 \sqrt{\cos (e+f x)} \sqrt{b \sec (e+f x)}\right ) \int \frac{1}{\sqrt{\cos (e+f x)}} \, dx}{21 b^2}\\ &=\frac{4 \sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right ) \sqrt{b \sec (e+f x)}}{21 b^2 f}-\frac{2 b \sin (e+f x)}{7 f (b \sec (e+f x))^{5/2}}+\frac{4 \sin (e+f x)}{21 b f \sqrt{b \sec (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 0.129931, size = 71, normalized size = 0.72 \[ \frac{\sec ^2(e+f x) \left (2 \sin (2 (e+f x))-3 \sin (4 (e+f x))+16 \sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right )\right )}{84 f (b \sec (e+f x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[e + f*x]^2/(b*Sec[e + f*x])^(3/2),x]

[Out]

(Sec[e + f*x]^2*(16*Sqrt[Cos[e + f*x]]*EllipticF[(e + f*x)/2, 2] + 2*Sin[2*(e + f*x)] - 3*Sin[4*(e + f*x)]))/(
84*f*(b*Sec[e + f*x])^(3/2))

________________________________________________________________________________________

Maple [C]  time = 0.133, size = 153, normalized size = 1.6 \begin{align*} -{\frac{2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{2} \left ( -1+\cos \left ( fx+e \right ) \right ) }{21\,f \left ( \cos \left ( fx+e \right ) \right ) ^{2} \left ( \sin \left ( fx+e \right ) \right ) ^{3}} \left ( 2\,i\sqrt{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( fx+e \right ) }{\cos \left ( fx+e \right ) +1}}}{\it EllipticF} \left ({\frac{i \left ( -1+\cos \left ( fx+e \right ) \right ) }{\sin \left ( fx+e \right ) }},i \right ) \sin \left ( fx+e \right ) +3\, \left ( \cos \left ( fx+e \right ) \right ) ^{4}-3\, \left ( \cos \left ( fx+e \right ) \right ) ^{3}-2\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}+2\,\cos \left ( fx+e \right ) \right ) \left ({\frac{b}{\cos \left ( fx+e \right ) }} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(f*x+e)^2/(b*sec(f*x+e))^(3/2),x)

[Out]

-2/21/f*(cos(f*x+e)+1)^2*(-1+cos(f*x+e))*(2*I*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*Ellip
ticF(I*(-1+cos(f*x+e))/sin(f*x+e),I)*sin(f*x+e)+3*cos(f*x+e)^4-3*cos(f*x+e)^3-2*cos(f*x+e)^2+2*cos(f*x+e))/cos
(f*x+e)^2/sin(f*x+e)^3/(b/cos(f*x+e))^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (f x + e\right )^{2}}{\left (b \sec \left (f x + e\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^2/(b*sec(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate(sin(f*x + e)^2/(b*sec(f*x + e))^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (\cos \left (f x + e\right )^{2} - 1\right )} \sqrt{b \sec \left (f x + e\right )}}{b^{2} \sec \left (f x + e\right )^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^2/(b*sec(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral(-(cos(f*x + e)^2 - 1)*sqrt(b*sec(f*x + e))/(b^2*sec(f*x + e)^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin ^{2}{\left (e + f x \right )}}{\left (b \sec{\left (e + f x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)**2/(b*sec(f*x+e))**(3/2),x)

[Out]

Integral(sin(e + f*x)**2/(b*sec(e + f*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (f x + e\right )^{2}}{\left (b \sec \left (f x + e\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^2/(b*sec(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate(sin(f*x + e)^2/(b*sec(f*x + e))^(3/2), x)